326 research outputs found

    Design of ternary signals for MIMO identification in the presence of noise and nonlinear distortion

    Get PDF
    A new approach to designing sets of ternary periodic signals with different periods for multi-input multi-output system identification is described. The signals are pseudo-random signals with uniform nonzero harmonics, generated from Galois field GF(q), where q is a prime or a power of a prime. The signals are designed to be uncorrelated, so that effects of different inputs can be easily decoupled. However, correlated harmonics can be included if necessary, for applications in the identification of ill-conditioned processes. A design table is given for q les 31. An example is presented for the design of five uncorrelated signals with a common period N = 168 . Three of these signals are applied to identify the transfer function matrix as well as the singular values of a simulated distillation column. Results obtained are compared with those achieved using two alternative methods

    Are There Oscillations in the Baryon/Meson Ratio?

    Full text link
    All available data indicate a surplus of baryon states over meson states for energies greater than about 1.5 GeV. Since hadron-scale string theory suggests that their numbers should become equal with increasing energy, it has recently been proposed that there must exist exotic mesons with masses just above 1.7 GeV in order to fill the deficit. We demonstrate that a string-like picture is actually consistent with the present numbers of baryon and meson states, and in fact predicts regular oscillations in their ratio. This suggests a different role for new hadronic states.Comment: 14 pages (RevTeX), McGill/92-0

    Breastfeeding, the use of docosahexaenoic acid-fortified formulas in infancy and neuropsychological function in childhood

    Get PDF
    OBJECTIVE: To investigate the relation between breastfeeding, use of docosahexaenoic acid (DHA)-fortified formula and neuropsychological function in children. DESIGN: Prospective cohort study. SETTING: Southampton, UK. SUBJECTS: 241 children aged 4 years followed up from birth. MAIN OUTCOME MEASURES: IQ measured by the Wechsler Pre-School and Primary Scale of Intelligence (3rd edn), visual attention, visuomotor precision, sentence repetition and verbal fluency measured by the NEPSY, and visual form-constancy measured by the Test of Visual-Perceptual Skills (Non-Motor). RESULTS: In unadjusted analyses, children for whom breast milk or DHA-fortified formula was the main method of feeding throughout the first 6 months of life had higher mean full-scale and verbal IQ scores at age 4 years than those fed mainly unfortified formula. After adjustment for potential confounding factors, particularly maternal IQ and educational attainment, the differences in IQ between children in the breast milk and unfortified formula groups were severely attenuated, but children who were fed DHA-fortified formula had full-scale and verbal IQ scores that were respectively 5.62 (0.98 to 10.2) and 7.02 (1.56 to 12.4) points higher than children fed unfortified formula. However, estimated total intake of DHA in milk up to age 6 months was not associated with subsequent IQ or with score on any other test. CONCLUSIONS: Differences in children's intelligence according to type of milk fed in infancy may be due more to confounding by maternal or family characteristics than to the amount of long-chain polyunsaturated fatty acids they receive in milk

    Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development

    Get PDF
    Among primates, human neonates have the largest brains but also the highest proportion of body fat. If placental nutrient supply is limited, the fetus faces a dilemma: should resources be allocated to brain growth, or to fat deposition for use as a potential postnatal energy reserve? We hypothesised that resolving this dilemma operates at the level of umbilical blood distribution entering the fetal liver. In 381 uncomplicated pregnancies in third trimester, we measured blood flow perfusing the fetal liver, or bypassing it via the ductus venosus to supply the brain and heart using ultrasound techniques. Across the range of fetal growth and independent of the mother's adiposity and parity, greater liver blood flow was associated with greater offspring fat mass measured by dual-energy X-ray absorptiometry, both in the infant at birth (r = 0.43, P<0.001) and at age 4 years (r = 0.16, P = 0.02). In contrast, smaller placentas less able to meet fetal demand for essential nutrients were associated with a brain-sparing flow pattern (r = 0.17, p = 0.02). This flow pattern was also associated with a higher degree of shunting through ductus venosus (P = 0.04). We propose that humans evolved a developmental strategy to prioritize nutrient allocation for prenatal fat deposition when the supply of conditionally essential nutrients requiring hepatic inter-conversion is limited, switching resource allocation to favour the brain if the supply of essential nutrients is limited. Facilitated placental transfer mechanisms for glucose and other nutrients evolved in environments less affluent than those now prevalent in developed populations, and we propose that in circumstances of maternal adiposity and nutrient excess these mechanisms now also lead to prenatal fat deposition. Prenatal developmental influences play important roles in the human propensity to deposit fa

    Prenatal development is linked to bronchial reactivity: epidemiological and animal model evidence

    Get PDF
    Chronic cardiorespiratory disease is associated with low birthweight suggesting the importance of the developmental environment. Prenatal factors affecting fetal growth are believed important, but the underlying mechanisms are unknown. The influence of developmental programming on bronchial hyperreactivity is investigated in an animal model and evidence for comparable associations is sought in humans. Pregnant Wistar rats were fed either control or protein-restricted diets throughout pregnancy. Bronchoconstrictor responses were recorded from offspring bronchial segments. Morphometric analysis of paraffin-embedded lung sections was conducted. In a human mother-child cohort ultrasound measurements of fetal growth were related to bronchial hyperreactivity, measured at age six years using methacholine. Protein-restricted rats' offspring demonstrated greater bronchoconstriction than controls. Airway structure was not altered. Children with lesser abdominal circumference growth during 11-19 weeks' gestation had greater bronchial hyperreactivity than those with more rapid abdominal growth. Imbalanced maternal nutrition during pregnancy results in offspring bronchial hyperreactivity. Prenatal environmental influences might play a comparable role in humans

    The association between maternal-child physical activity levels at the transition to formal schooling: cross-sectional and prospective data from the Southampton Women's Survey.

    Get PDF
    BACKGROUND: Physical activity decreases through childhood, adolescence and into adulthood: parents of young children are particularly inactive, potentially negatively impacting their children's activity levels. This study aimed to determine the association between objectively measured maternal and 6-year-old children's physical activity; explore how this association differed by demographic and temporal factors; and identify change during the transition to school (from age 4-6). METHODS: Data were from the UK Southampton Women's Survey. Physical activity of 530 6-year-olds and their mothers was measured concurrently using accelerometry for ≤7 days. Cross-sectionally, two-level mixed-effects linear regression was used to model the association between maternal-child daily activity behaviour at age 6 [minutes sedentary (SED); in moderate-to-vigorous physical activity (MVPA)]. Interactions with demographic factors and time of the week were tested; how the association differed across the day was also explored. Change in the association between maternal-child physical activity (from age 4-6) was assessed in a subset (n = 170) [outcomes: SED, MVPA and light physical activity (LPA)]. RESULTS: Mother-child daily activity levels were positively associated (SED: β = 0.23 [0.20, 0.26] minutes/day; MVPA: 0.53 [0.43, 0.64] minutes/day). The association was stronger at weekends (vs. weekdays) (interaction term: SED: βi = 0.07 [0.02, 0.12]; MVPA: 0.44 [0.24, 0.64]). For SED, the association was stronger for those children with older siblings (vs. none); for MVPA, a stronger association was observed for those who had both younger and older siblings (vs. none) and a weaker relationship existed in spring compared to winter. Longitudinally, the association between mother-child activity levels did not change for SED and LPA. At age 6 (vs. age 4) the association between mother-child MVPA was weaker across the whole day (βi: - 0.16 [- 0.31, - 0.01]), but remained similar at both ages between 3 and 11 pm. CONCLUSIONS: More active mothers have more active 6-year-olds; this association was similar for boys and girls but differed by time of week, season and by age of siblings at home. Longitudinally, the association weakened for MVPA between 4 and 6 years, likely reflecting the differing activities children engage in during school hours and increased independence. Family-based physical activity remains an important element of children's activity behaviour regardless of age. This could be exploited in interventions to increase physical activity within families.This work was conducted by the Medical Research Council [Unit Programme number MC_UU_12015/3 and MC_UU_12015/7] and the Centre for Diet and Activity Research (CEDAR), a UKCRC Public Health Research Centre of Excellence. Funding from the British Heart Foundation, Cancer Research UK, Economic and Social Research Council, Medical Research Council, the National Institute for Health Research, and the Wellcome Trust, under the auspices of the UK Clinical Research Collaboration, is gratefully acknowledged (CEDAR grant numbers: ES/G007462/1; 087636/Z/08/Z; MR/K023187/1). The work of CC, KMG, NCH, HMI and SMR was supported by funding from the Medical Research Council, British Heart Foundation, the Arthritis Research UK, National Osteoporosis Society, International Osteoporosis Foundation, Cohen Trust, the European Union Seventh Framework Programme (FP7/2007-2013) EarlyNutrition project under grant agreement 289346, NIHR Southampton Biomedical Research Centre, and National Institute of Health Research Musculoskeletal Biomedical Research Unit, Oxford. KH is funded by the Wellcome Trust (107337/Z/15/Z)

    Conformal Invariance and Degrees of Freedom in the QCD String

    Full text link
    We demonstrate that the Hagedorn-like growth of the number of observed meson states can be used to constrain the degrees of freedom of the underlying effective QCD string. We find that the temperature relevant for such string theories is not given by the usual Hagedorn value TH160T_H\approx 160 MeV, but is considerably higher. This resolves an apparent conflict with the results from a static quark-potential analysis, and suggests that conformal invariance and modular invariance are indeed reflected in the hadronic spectrum. We also find that the D=2D_\perp=2 scalar string is in excellent agreement with data.Comment: 13 pages (Standard LaTeX); --> replaced version emphasizes new results, and agrees with version to appear in Physical Review Letters (Jan 1994

    Arachidonic acid and DHA status in pregnant women is not associated with cognitive performance of their children at 4 or 6–7 years

    Get PDF
    Arachidonic acid (ARA) and DHA, supplied primarily from the mother, are required for early development of the central nervous system. Thus, variations in maternal ARA or DHA status may modify neurocognitive development. We investigated the relationship between maternal ARA and DHA status in early (11·7 weeks) or late (34·5 weeks) pregnancy on neurocognitive function at the age of 4 years or 6–7 years in 724 mother–child pairs from the Southampton Women’s Survey cohort. Plasma phosphatidylcholine fatty acid composition was measured in early and late pregnancy. ARA concentration in early pregnancy predicted 13 % of the variation in ARA concentration in late pregnancy (β=0·36, P&lt;0·001). DHA concentration in early pregnancy predicted 21 % of the variation in DHA concentration in late pregnancy (β=0·46, P&lt;0·001). Children’s cognitive function at the age of 4 years was assessed by the Wechsler Preschool and Primary Scale of Intelligence and at the age of 6–7 years by the Wechsler Abbreviated Scale of Intelligence. Executive function at the age of 6–7 years was assessed using elements of the Cambridge Neuropsychological Test Automated Battery. Neither DHA nor ARA concentrations in early or late pregnancy were associated significantly with neurocognitive function in children at the age of 4 years or the age of 6–7 years. These findings suggest that ARA and DHA status during pregnancy in the range found in this cohort are unlikely to have major influences on neurocognitive function in healthy children.</p
    corecore